Foston CE, Terrington CE VA \& Stillington Primary Schools Progression Map

'Love, Learn \& Grow Together'

Investigating Materials			Within our Federation of schools, we intend that all our children will develop a deep curiosity about the world around them, and to experience the wonder which comes with gaining a knowledge and understanding about the processes and systems they can and can't see. Our children will further develop: - The ability to think independently and raise questions about working scientifically and the knowledge and skills that it brings; - Confidence and competence in the full range of practical skills; - Excellent scientific knowledge and understanding which is demonstrated in written and verbal explanations; - Scientific enquiry skills to be embedded in each topic throughout the school to allow the children to build upon prior knowledge; - The ability to undertake practical work in a variety of contexts; - Have a clear understanding of the jobs available from science specialisms.		
Key Concept	Overview	EYFS	Key Stage 1		Stage 2
Investigating Materials	Topic	3-4 yrs -Use their senses in handson exploration of natural materials. -explore collections of materials with similar and/or different properties.	Changes in Materials	States of Matter (Y3) / Separating M	(Y5) / Properties of Materials
	Milestones/ NC			LKS2	UKS2
			Distinguish between an object and the material from which it is made. Identify and name a variety of everyday materials, including	Rocks and Soils Compare and group together different kinds of rocks on the basis of their simple, physical properties.	Compare and group together everyday materials based on evidence from comparative and fair tests, including their hardness, solubility, conductivity (electrical and thermal), and response to magnets.

				building on their teaching in mathematics. Identify the part played by evaporation and condensation in the water cycle and associate the rate of evaporation with temperature.	oxidisation and the action of acid on bicarbonate of soda.
	Knowledge	To know how to use their senses in hands-on exploration of natural materials. To explore collections of materials with similar and/or different properties. To explore how things work. To make imaginative and complex 'small worlds' with blocks and construction kits. To join different materials freely and explore different textures.	That there is a difference between an object and the material from which it is made. Specific example/s to be taught: Dress- fabric Chair - wood Car - metal Mugs - ceramic Window - glass Toy duck - plastic Elastic bands - rubber Books - paper. That everyday objects are made out of different materials, including wood,	Rocks and Soils That different kinds of rocks can be compared and grouped according to their basic physical properties. Specific example/s to be taught: Granite (igneous), basalt (igneous), chalk (sedimentary), limestone (sedimentary), slate (metamorphic), marble (metamorphic). That the properties of rocks can be related to their formation.	To compare and group together everyday materials based on evidence from comparative and fair tests, including their hardness, solubility, conductivity (electrical and thermal), and response to magnets. Specific example/s to be taught: Examples of each type of the following materials: plastic, wood, metal, paper, synthetic fabric, natural fabric, ceramic, glass, stone, rubber, water. Each type of material to be tested for: hardness, solubility, electrical and thermal conductivity, magnetism.

				change is not usually reversible, including changes associated with burning, oxidisation and the action of acid on bicarbonate of soda. Specific examples/s to be taught: Rusting iron key Hard-boiled egg Baking dough into bread Burned paper
Vocabulary	Soft Smooth Hard Rough Flexbile Smell, taste and touch, Metal Wood Glass Plastic Solid Liquid Gas	Soft -easily moulded Smooth -free from bumps Hard- not easily moulded Rough- unsmooth surface Senses- sight, hearing, smell, taste and touch Metal - conducts heat and electricity well Wood -substance from trees Glass -hard usually transparent substance used for windows, glasses etc Plastic- synthetic product that can be formed into any shape Solid- has definite shape	States of matter - Materials can be one of three states: solids, liquids or gases. Some materials can change from one state to another and back again. Solids - These are materials that keep their shape unless a force is applied to them. They can be hard, soft or even squashy. Solids take up the same amount of space no matter what has happened to them. Liquids - Liquids take the shape of their container. They can change shape but do not change the amount of space they take up. They can flow or be poured. Gases - Gases can spread out to completely fill the container or room they are in. They do not	Materials - The substance that something is madeoutof,e.g.wood, plastic, metal. Solids - One of the three states of matter. Solid particles are very close together, meaning solids, such as wood and glass, hold their shape. Liquids - This state of matter can flow and take the shape of the container because the particles are more loosely packed than solids and can move around each other. Examples of liquids include water and milk. Gases - One of the three states of matter. Gas particles are further apartthan solid or liquid particles and they are free to move around. A gas fills its container, taking both the shape and the volume of the

